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Problems connected with the structural aspects of dynamics are addressed in the 
context of the algebraic approach to generally covariant quantum field theory. It 
is argued that the dynamical structure of observables in the generally covariant 
context becomes fundamentally state dependent. This makes it necessary to 
relate the entire dynamics to state-dependent automorphisms of the algebra of 
observables. The relevant states are highly correlated on large scales, so that we 
may not have exact accuracy for the identification of their observables in terms 
of a (quasi) local net of algebras. This feature is controlled by a scale fluctuation 
of the total observables around a point which is used to obtain a description of 
a one-parameter group of state-dependent automorphisms in terms of the modular 
group. In general, it is not clear whether the action of the latter group has a 
dynamical interpretation. We comment on a duality principle which could provide 
a straightforward means to obtain an "asymptotic" interpretation of the modular 
group on small scales. 

1. ~ T R O D U C T I O N  

The formulation of a quantum field theory incorporating the basic struc- 
tures of general relativity is widely considered to represent the key problem 
of  q u a n t u m  gravity.  There  has  b e e n  a cons ide rab l e  a m o u n t  o f  w o r k  

approach ing  this p rob lem,  bu t  at p resen t  it  s e em s  to be fair  to say that there  
is no  genera l  a g r e e m e n t  on  choos ing  the bas ic  p r inc ip les  on  wh ich  the theory  

should  operate .  
Q u a n t u m  field theory,  in essence ,  o r ig ina ted  f rom the a t tempt  at a un i f i ca -  

t ion  o f  specia l  re la t iv i ty  and  q u a n t u m  physics .  The  p resen t  approach  to this 
un i f i ca t ion  is based  on  the pr inc ip le  o f  locali ty,  wh ich  asserts that the phys i ca l  
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systems are fundamentally local systems in the sense that their observables 
can be measured in finite space-time regions and observables associated to 
causal disjoint regions are always compatible. This attitude was the starting 
point of the algebraic approach to quantum field theory (Haag and Kastler, 
1964). 

On the structural level, however, one encounters in this attitude a theoreti- 
cal idealization dismissing a possible incorporation of gravity at the very 
outset. This idealization concerns the assumption of a priori  causal relations 
between observables associated to distant space-time regions. A striking 
example of the kind of difficulty one encounters is provided by looking at 
the basic principle of general relativity, namely the principle of general 
covariance. Since the action of the group of space-time diffeomorphisms 
does not leave the causal relations unchanged, we would obtain a contradiction 
if we were to implement the general covariance a priori,  

In dealing with this difficulty the central thesis is that the principle of 
locality ought to be advanced in its most stringent form dispensing with the 
existence of a priori  causal relations between distant observables. It is along 
this line that one can hope for a consistent unification of gravity and quantum 
field theory. 

This point of view has been adopted by Fredenhagen and Haag (1987) 
in their approach to a generally covariant quantum field theory. Their work 
seems to clarify considerably the question of how general covariance can be 
incorporated into quantum field theory. 

In the present work we address the problem of specifying the structure 
of dynamics in generally covariant quantum field theory. The significance 
of this problem is obvious, as the incompatibility of general covariance with 
the existence of a priori  algebraic relations between observables mentioned 
above confronts us with the crucial question of how a dynamical structure 
can properly be imposed on the observables. It is needless to say that the 
resolution of this problem is quite essential for understanding what can be 
observed and predicted in quantum gravity. However, it should clearly be 
understood that the present paper undertakes only an extremely modest 
attempt in this direction; its spirit is extremely heuristic and much work will 
be required to treat these problems on a rigorous basis. 

First, we present a description of the algebraic approach to generally 
covariant quantum field theory (Fredenhagen and Haag, 1987) on which our 
presentation is based (see also Salehi, 1992). We deal with a differentiable 
manifold M and associate to each open set ~ ~ ~t an involutive algebra 
~((~). The self-adjoint elements of ~l(O) are interpreted as observation proce- 
dures, the latter being pure descriptions of laboratory measurements in (3. 
There should not be any a priori  relations between observation procedures 
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associated with different regions. In other words, the net of algebras ,~/ = 
U ~((~) has to be flexible (free from a priori relations). 

This interpretation allows us to implement the principle of general covari- 
ance by considering the group Diff(M) of all diffeomorphisms of the manifold 
as acting by automorphisms on ~ ,  i.e., each diffeomorphism • ~ Diff(M) 
is represented by an automorphism c~• such that 

a •  = .~(x(C~)) (1) 

There could be, of course, many observation procedures which are equivalent 
with respect to their action on a physical system, that is, with respect to the 
result of measuring an observable. Thus, the essential question is how to 
identify the observables of the theory as equivalence classes of observation 
procedures. To this aim, we first note that the precise mathematical description 
of a physical system is given in terms of a state, i.e., a positive linear functional 
on .~. Given a state co, one gets via the GNS construction a representation 
"rr '~ of ~ by an operator algebra in a Hilbert space ~,o with a cyclic vector 
Do, ~ ~o. In the representation (-r% ~,o, Do,) one can select a family of related 
states on ~ ,  namely those represented by vectors and density matrices in 
~o,. It corresponds to the set of normal states of the representation ~% the 
so-called folium of to. 

Once a physical state 0o has been specified, one can consider in each 
subalgebra ~((~) the equivalence relation 

A -- B *-* co'(A - B) = 0, 'r ~ ~o, (2) 

Here ~,o denotes the folium of the state to. The set of such equivalence 
relations generates a two-sided ideal #o,(~):in M(~). Now, the algebra of  
observables M~'bs(O) may be constructed from the algebra of observation 
procedures M(O) by taking the quotient 

.~o'bs(~') = ~ ( ~ ' ) / 8 " ( ~ )  (3) 

It is clear that in this approach the emphasis in the specification of physical 
laws, i.e., relations between observables of the theory, is placed on the 
specification of admissible physical states. In this way the dynamical struc- 
tures of observables become fundamentally state dependent. This has a deep 
dynamical significance because it asserts that it is the intrinsic structure of 
physical states that will determine the allowed structure of observables in 
the generally covariant context. Our main objective in rest the of the paper 
is to examine the extent to which this idea could find a well-established 
implementation. 
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For mathematical convenience in what follows we pass 2 from the net 
of the algebra of observables ~'bs((~) tO the corresponding net of yon Neumann 
algebras fft~'bs(O). 

At this point a remark is needed. Since in the generally covariant context 
no diffeomorphism-invariant notion for localization exists, it is not clear in 
what sense the net ~t~'bs((~) can be considered as local. However, because of 
the existence of physical laws in that net some structural aspects of localiza- 
tions may be converted into appropriate algebraic properties of the net. 
Indeed, if we realize that the physical meaning of localization requires the 
nonnegligible existence of relative correlations of "the outside," then, in a 
minimal adoption of the locality principle, we must restrict the theory to a 

tot  net ~t~'b~((~) for which the commutant ~tob~(O) is nontrivial. A region ~ C M 
satisfying this condition will be called in the following a test region. Thus, 
in the minimal adoption of the locality principle, we may confine our attention 
to a net spanned by algebras corresponding to test regions. 

2. DYNAMICAL GROUP 

We want now to investigate the implementation of general covariance 
more closely. The basic postulate is that to each diffeomorphism X ~ Diff(M) 
there is associated an automorphism tx x such that (1) holds. 

Consider a diffeomorphism • E Diff(M). Given a state to, we may ask 
whether the action of • on the algebra of observables can be described by 
the same automorphism ot x, namely 

~x(~'bs(~)) = ~obs(• (4) 
In order for this to be possible, the ideal ~=((~) must transform covariantly, i.e., 

t~x(~to(O)) = :~'(x(~3)) (5) 

We infer that the algebra of observables constructed with respect to the folium 
of the state to no longer exhibits the basic symmetry of the theory, namely 
the symmetry under the whole group Diff(M). Rather the symmetry is now 
reduced to the group of diffeomorphisms satisfying the constraint condition 
(5), in the following called the dynamical group of to. Therefore, the actual 
choice of the state to immediately leads to a spontaneous breaking of the 
symmetry group Diff(M). Note that the dynamical group of the state to arises 
as an intrinsic property of the folium of to.a 

2The transition from ~'b~(O) to ~t~'b~(O ) is explained in Fredenhagen and Haag 0987). 
3One cannot say with confidence that this feature is always free from physical inconsistencies 

in a general covariant context, for it is possible that the individual characteristics of the states 
in the same representation may become important in the construction of dynamics. It is entirely 
open to what extent this aspect of the dynamics, which is related to the problem of backreaction 
(Salehi, 1992), will affect the structure of generally covariant quantum field theories. 
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It is clear that an important step in the actual specification of a physically 
admissible state in a general covariant context is the understanding of the 
action of the corresponding dynamical group. This problem has two distinct 
aspects: first, the specification of the algebraic action of the dynamical group 
as a group of state-dependent automorphisms acting on observables; second, 
the geometric interpretation of the latter group. It is clear that, not knowing 
absolute forms of geometric symmetries in a general covariant context, it is 
necessary to introduce the above distinction between the algebraic and the 
geometric aspects of the problem. The present paper deals mainly with the 
first aspect. Our basic remark is that for physically admissible states the 
action of the dynamical group corresponds to global operations affecting the 
entire net of the algebra of observables. The need for this limitation is obvious, 
as in the generally covariant context the origin of the dynamical group 
ought to be attributed to the inertial manifestation (dynamically ascertainable 
properties) of observables, and if, according to the implications of general 
covariance, inertia is to be understood as a global dynamical effect of a 
closed physical system, we must then require that the local action of the 
dynamical group about a given point of observation be correlated with a 
universal action affecting the entire net of observables around that point. 

If this is to be assumed, then for physically admissible states the action 
of the dynamical group cannot properly be approximated by the action of an 
inner automorphism of the algebra of observables. Indeed, the assumption 
that ot x be generated by a "localized" element U in the test-region (~0, namely 

Otx(A) = UAU-I (6) 

implies that the action of ~t• on the commutant of ~t~'bs((~0) can properly be 
approximated by the identity. This is in opposition to the assumption that 
the dynamical group has a global action. 

It should clearly be understood that the global action of the dynamical 
group being assumed here requires two things. On the one hand, there shall 
be large-scale correlations in the structure of physically admissible states, a 
property typical of quantum field theory. Second (and this is supposed to be 
the distinguishing characteristic of general covariance), there shall be no 
possibility for the exact separation of the net of the algebra of total observables 
around a given point of observation from the effect of large-scale correlations 
which exist in the structure of physical states. 4 

Mathematically, these qualitative requirements can be converted into 
appropriate restrictions on the representations of the algebra of observables 

4Note that in Minkowski space, due to the cluster property of Wightman functions (Haag, 
1992), it is possible to have exact separation of the entire net of observables from the 
"asymptotic tail" of long-distance correlations existing in the vacuum. 
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in a general covariant context. First, consider the cyclic vector f/to E ~to in 
the GNS representation of a physical state to, then pick a test region (~ C dVt 
and ask whether l~to can be annihilated by elements of ~tg'bs((~) [respectively, 

tOt by elements of Rob((~)]. It is obvious that, if the existence of large-scale 
correlations in the structure of physical states is considered to be the basic 
attribute of general covariance, then a proper separation of the physical 
process of annihilation of l~tO by elements in ~g'bs(~) [respectively by elements 

tOl of ~tobs((~)] from the effect of large-scale correlations which exists in to must 
be impossible. Mathematically, this may be expressed by admitting any test 
region (~ C ~t to have the vector f/o, as a separating vector for both 

tOt ~'bs(~) and ~obs((~), that is, 

a l )  = O, A E ~t~'bs((~) [resp. a ~ ~'gs((~)] (7) 

implies A -- 0. Now standard arguments (Bratteli and Robinson, 1981) may 
be used to prove that l-ltO must be both a cyclic and a separating vector for 

~'bs(~)- 
It is now clear that, in a minimal adoption of the locality principle, if 

we require that the net of algebras is to be spanned by algebras corresponding 
to test regions, then for the restriction of to on each test region ~ C M the 
vector f~tO must be a cyclic and separating vector for ~'bs(O)- This is a first 
restriction imposed on the kind of representation by the requirement of 
general covariance. 

It should, however, be realized that this restriction does not yet explicitly 
take into account the distinguishing characteristic of general covariance, the 
latter asserting that, given a point x E M, there shall be no possibility for 
the exact separation of the net of the algebra of observables around that point 
from the effect of large-scale correlations. To deal with it, let DX(M) denote 
the set of all test regions in M containing x as an interior point. Now, suppose 
we are given, quite in the sense of an additive net structure, an increasing 
sequence (~ C {~X+l of test regions in DX(M) to span the net of the algebra 
of observables around x. We may then ask whether ~tO can be annihilated 
by an element in the algebra corresponding to asymptotic tail (n ---> c~) of 
the sequence. It is clear that, in the absence of an exact separation of the net 
of the algebra of observables around x from the effect of large-scale correla- 
tions, we should reject the admission of this kind of annihilation. This means 
that the asymptotic tail of the sequence should have properties arbitrarily 
close to a test region, so that for the restriction of to on the latter region, f/tO 
still remains a cyclic and separating vector. Therefore we may, mathematically, 
require that any appropriate increasing sequence of test regions needed to 
span the net of total observables around x should correspond to the elements 
of a partially (with respect to the inclusion C) ordered set, with a maximal 
element corresponding to the asymptotic tail of that sequence. This is a 
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statement about the distinguishing characteristic of  the net structure of observ- 
ables in a general covariant context. 

3. C H A R A C T E R I S T I C  DOMAIN OF STATES AROUND A P O IN T 

The structural properties of the net of the algebra of observables which 
are expected to hold in a general covariant context have been discussed in 
the previous section. Given a point of observation, since no exact separation 
of the net of  the algebra of observables around that point from the effect of 
large-scale correlations is possible, there is the important question of  how 
the net can dynamically be closed around that point. In this section we take 
the key technical step to deal with this question. The major procedure we 
shall follow is, in the first place, to look more closely at the expected 
characteristics of  states with large-scale correlations, and in the second place, 
to use these characteristics to explain how the net of the algebra of observables 
around a given point of observation can dynamically be closed. 

The expected characteristics of states with large-scale correlations in a 
general covariant context is that they cannot maintain enough accuracy for 
the exact identification of their observables around a point in terms of  a 
(quasi) local net of algebras. Therefore, they are expected to give rise to the 
occurrence of  nonnegligible relative fluctuations in that net which makes the 
observables determined only with a finite accuracy. As 'relative' fluctuations 
in a system are expected to increase as the size of  the systems becomes 
progressively larger, we may arrive at the conclusion that, given a state with 
large-scale correlations in a general covariant context, it is possible and 
warranted to deal with a numerical truncation in the global extension of the 
corresponding (quasi) local net of observables around an arbitrary point of  
observation. This aspect is clearly reflected in the particular way we use to 
control the asymptotic tail of  any appropriate directed sequence of  test regions 
needed to span the net of  observables around a point. The essential realization 
now is that, physically, the effect of  this type of truncation may be equivalent 
to the appearance of a minimal observable scale which may be looked upon 
as representing the nonvanishing lower bound for the effective ratio of  an 
appropriately chosen local (small) length to a global (large) length. This scale 
must be related to the presence of the absolute form of the restrictions on 
the maximal achievable limit of accuracy for the exact determination of total 
observables around a given point and in this sense it must be identified as 
a common property of  the states in the same representation. 

The mathematical counterpart of  this observation is the following. Let 
x e M be fixed. We just assume that a characteristic scale h(x) can be attached 
to x once a physical state to and its GNS representation (~'~, "tr% f~o,) have 
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been specified. 5 This scale can be related to the structural properties of the 
net of the algebra of observables around x: Consider the set D~(M) of all test 
regions in M containing x as an interior point. Let ~x C (~+1 be an increasing 
sequence of test regions in DX(M) needed to span the net of the algebra of 
observables around x. Denoting its maximal element by (~  e /T'(M), we 
shall assume that k(x) corresponds to the maximal accuracy by which all 
states in the folium of to can be regarded as indistinguishable in their canonical 
restriction to the commutant of fftotob~((~x), namely 6 

II(to' - to")l~'~s(~)ll --" X(x), Vto', to" e ~to (8) 

In terms of observables, this condition implies that, with the maximal accuracy 
determined by X(x), the total algebra of observables around the point x can 
be identified with the algebra fft~'b~((~x). In this sense, the presence of h(x) 
implies an absolute form of  restrictions on the maximal achievable limit of 
accuracy for the exact determination of total observables around a given point. 

In the following we shall call ( ~  the characteristic domain of to around 
the point x. Note that a physical state to in its natural restriction to ( ~  admits 

tO X tOt  X an algebra of  observables ~obs((LO with a nontrivial commutant ~tob~(G~). 
We now deal with the question of the influence of h(x) on the nature 

of the action of the dynamical group on observables. There is a natural 
way to account for this influence. Indeed, as the maximal accuracy in the 
determination of the total observables around a given point is limited by h, 
it is natural to require that this kind of  limitation be respected by the action 
of the dynamical group on observables. In specific terms this may lead us 
to require the conditions 

tO X tO X t o t  X tOt  X Otx(~tob~(~) ) C ~tob~(~), Otx(~obs(~| ) C ~ob~(~) (9) 

which express a sort of dynamical stability. The conditions mean in particular 
that the algebra ~'bs(~ k) Can be regarded as dynamically closed around x. 
It is clear that this is a statement about the particular way in which the 
dynamical group acts geometrically on the observables. It roughly means 
that this action does not move the points to "infinity." 

4. M O D U L A R  GROUP 

Generally, the dynamical group of an admissible physical state to may 
have various subgroups. These subgroups will describe the symmetry transfor- 

sit is not the objective of this paper to make any assumptions about the (average) value of 
h(x). We uncritically accept its existence in any realistic situation in a general covariant context. 

6In the following the norm of a state to corresponds to the smallest possible number K for 
which Ito(m) l < KI[AII holds for an arbitrary element A of the algebra in question. 
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mations respecting the algebraic relations imposed by the state to on the 
observables of the theory. Therefore, further restrictions on the class of 
allowed representations of the algebra of observables can be imposed by 
specifying the allowed subgroups. The problem is by no means simple, 
because in the present context the identification of various subgroups requires 
detailed knowledge of the state-dependent dynamics involved. In the rest of 
the paper we shall deal with some isolated aspects of the problem which 
may significantly be connected with the modular group. 

We first start with the definition of the modular group as a one-parameter 
group of state-dependent automorphisms on ~to%s(0~): Let x e M be fixed. 
Given an admissible physical state to in its natural restriction to its characteris- 
tic domain ~ around x, we may use the GNS representation (~o,, ,rr,O, fro) 
of to to get a characterization of the observables on the characteristic domain 
of to in terms of a (quasi) local net of Neumann algebras 

ffto%(6~) = U fft~'bs((~), ~ C 6~ (10) 

Now, in the present context the canonical procedure of Tomita and Takesaki 
(Bratteli and Robinson, 1981; Haag, 1982) may be adopted to associate with 
~o%s(6 x) a one-parameter group of (outer) automorphisms. We collect here 
the essential steps. Since ~0' is a cyclic and separating vector for ~o%s(6x), 
we can consider the operators S and F defined by 

10 X S A f l  ~ = A * ~  ~', A ~ ~obs(~3o~) (11) 

t i l l  X F A ' ~ ) "  = A ' * O  ~ A '  e ~obs(~oo) (12) 

One can show that S and F are closed operators. Let 

S = J A  in (13) 

be the polar decomposition of S. Here J is antiunitary and A, the so-called 
modular operator, is self-adjoint and positive (one has A = FS). The Tomita- 
Takesaki theorem provides us with a one-parameter group of automorphisms 
{at on ~o%s(6~), the modular group of to, defined by 

a t ( A )  = A - i t A A  it, A ~ ~o'~ x) (14) 

We may conclude that, restricting a state to to its characteristic domain, we 
meet the canonical action of the modular group of to as a group of state- 
dependent automorphisms on ffto%~(~). At the first instance, it appears as 
natural to require that the latter action shall coincide with the action of a 
one-parameter subgroup of the dynamical group of to. Indeed, doing so, we 
would be able to connect the effect of large-scale correlations with the thermal 
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behavior of states, 7 a feature which will be of particular importance for the 
interpretation of the theory in physical terms. 

However, the above requirement is a very strong limitation, because it 
requires that the modular automorphisms on ffto~bs((~ x) have a somewhat global 
interpretation on the whole characteristic domain of to, and the question 
arises: Why we should believe in it? It is important to note that the confidence 
that one feels in that requirement arises because it leads to thermal properties 
of  states. However, in a general covariant context, thermal properties should 
be local properties. Therefore, it seems more natural to avoid global considera- 
tions and to deal with the less restrictive requirement that the modular group 
shall have an asymptotic interpretation on a "strictly localized" subdomain 
of (~x. To proceed in this direction, we introduce a duality principle. 

5. DUALITY AND U L T R A S H O R T  DISTANCES 

So far we have relied on the idea that it is impossible to separate the 
net of  the algebra of observables around a given point x from the effect of 
large-scale correlations which exists in the structure of  physical states in a 
general covariant context. We would like to argue that this kind of  description 
can exhibit aspects of ignorance of  the "ultrashort-distance regime." The 
essential input here is to exclude the possibility of  dealing with pointlike 
observables, that is, observables whose measurements require arbitrarily high 
energies. In the present context there is one particular way to do this. Since 
the effect of large-scale correlations may in principle lead to thermal behavior 
of  states, it appears that, given an observable, its strict localization may result 
in a transfer of that observable into thermal entropy. By using this heuristic 
idea, we propose restrictive conditions concerning the minimization of  the 
net of  the algebra of observables. We first assume that the minimization of  
the latter net around a given point x will amount to an algebra corresponding 
to the asymptotic tail of  a contracting sequence 

(~x+t c 0~, x ~ (~x, (~  c O~ (15) 

of  test regions. We also accept that it is necessary for an adequate minimization 
that the latter sequence corresponds to elements of  a partially ordered set 
with a minimal element, say (~. Now the essential point is that, in accordance 
with what has been heuristically suggested, we must have maximal lack of 
information about the elements of the algebra ~to%s(~6). Now, as the total 
algebra of observables around x is identified with ~to%s(~), we may require 
the duality relation 

7Note that any faithful state is a KMS state with respect to the modular group it generates 
(Bratteli and Robinson, 1981; Haag, 1992). 
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tO X tOt  2g ~tobs(~0) = ~obs(G~) (16) 

which connects in a very restrictive manner the physics of ultrashort distances 
with the effect of large-scale correlations. 

It should be remarked that this duality has a counterpart in standard 
results of quantum field theory in Minkowski space. There, due to the exact 
Lorentz invariance, the algebra of the spacelike complement of a single point 
generates the total algebra. In the present context, the relation (16) stands in 
close analogy with that statement and is taken to be one of the basic features 
of general covariance. 

Now, the duality (16) is conjunction with (9) implies 

~x(~ tobs (~ ) )  c_ ~toto~+(r (17)  

~tobs(~0). We can also relate the which expresses the dynamical stability of os x 
duality (16) to a statement regarding the local equivalence of states in the 
same representation. Indeed connecting (8) with (16), we get 

II (to'  - to") I ~++,,+~o~ II - -  X(x) vto' ,  r E ~o  (18) 

This means that within the accuracy determined by h(x) all states in the 
folium of to become indistinguishable on ~)~. We have, therefore, in (18) a 
sort of local equivalence of states in the same representation. It should be 
noted that in a fixed gravitational background the local equivalence of states 
in the same representation was attributed to the principle of local definiteness 
(Haag et al., 1984). In the present context, the duality (16) attributes the origin 
of this equivalence to a principal ignorance of the ultrashort-distance regime. 

The fact that all states in the folium of to become physically indistinguish- 
able on ~)~ suggests that they all correspond to the same local equilibrium 
state. This leads us to require that in the restriction of to on the domain ~ 
the coincidence of the modular group s with a one-parameter subgroup of the 
dynamical group of to shall be an exact feature in any generally covariant 
quantum field theory. This inevitably faces us with the important question 
about the geometric interpretation of the action of the modular group. It is 
not the objective of the present paper to clarify this question; still, some 
remarks may be useful. On general grounds we expect that there are restric- 
tions imposed on the geometric action of the modular group on ultrashort 
distances by certain characteristics known from Minkowski space theories. 
For instance, in those theories, due to the observation of Hilsop and Longo 
(1982) (see also Fredenhagen, 1985), in the presence of a free massless scalar 
field, the modular group of a double cone is related to a one-parameter 

8 Note that the action of the modular group as a group of state-dependent automorphisms can 
be defined on 06 by replacing in (11)-(14) the set r by 06. 
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subgroup of the conformal group which has a timelike generator. Since on 
ultrashort distances a general theory is expected to approach its "massless 
sector," we expect that a similar analysis can be made in the generally 
covariant context, provided the massless sector is dominated by a scalar field 
theory (dilatonic sector). 

6. CONCLUDING REMARKS 

The present paper has described possible limitations arising from the 
effect of general covariance on the dynamical structure of observables in 
quantum field theory. These limitations give rise to state-dependent laws and 
are clearly reflected in the nature of restrictions imposed on the class of 
allowed representations. Of particular importance is the realization that the 
implementation of general covariance may lead to a nonnegligible scale 
fluctuation in the exact determination of the total observables around an 
arbitrary point of observation. This fluctuation has its origin in the structure 
of physical states, which are globally too correlated in order to maintain 
enough accuracy for the exact description of total observables by means of 
a (quasi) local net of algebras. This would restrict the nature of the dynamics 
quite essentially. Specifically, on ultrashort distances an intimate connection 
of the dynamics with the modular group may be a general phenomenon, a 
feature which is closely related to the thermal-time hypothesis recently pro- 
posed in Connes and Rovelli (1994). Needless to say, such a connection may 
also provide a general perspective for understanding the thermal aspects of 
quantized fields in a gravitational context, i.e., Unruh's (1976) Hawking's 
(1975) effect. 
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